\square

Third Semester B.E. Degree Examination, Feb./Mar. 2022 Engineering Electromagnetics

Time: 3 hrs .
Max. Marks: 100

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

1 a. State and explain Coulomb's law in vector form.
(07 Marks)
b. Let a point charge of $\mathrm{Q}_{1}=20 \eta \mathrm{C}$ be located at $\mathrm{A}(3,-1,5)$ and a charge of $\mathrm{Q}_{2}=40 \eta \mathrm{C}$ be located at $B(-2,3,0)$. Find force \bar{F} at $C(1,2,3)$ having charge of Q_{3} of $10 \mu \mathrm{C}$ in free space.
(08 Marks)
c. Define electric field intensity $\overline{\mathrm{E}}$ and explain the method of obtaining $\overline{\mathrm{E}}$ at a point in Cartesian co-ordinate system due to point charge Q .
(05 Marks)

OR

2 a. Obtain the expression for electric field $\overline{\mathrm{E}}$ due to infinite line change with charge density of $\rho_{\mathrm{L}} \mathrm{C} / \mathrm{m}$, at point P on y -axis at a distance ' r ' from the origin. The line is placed along z -axis.
(08 Marks)
b. Define electric flux density $\overline{\mathrm{D}}$. Obtain the expression for $\overline{\mathrm{D}}$ due to point charge and infinite line charge,
(06 Marks)
c. Find $\overline{\mathrm{D}}$ at $\mathrm{P}(6,8,-10) \mathrm{m}$ due to uniform infinite line charge with charge density $\left(\rho_{\mathrm{L}}\right)$ of $40 \mu \mathrm{C} / \mathrm{m}$ on z -axis.
(06 Marks)

Module-2

3 a. State and prove Gauss's law.
(08 Marks)
b. Find div $\overline{\mathrm{D}}$ for the following field,
(i)

$$
\begin{aligned}
& \overline{\mathrm{D}}=\left(2 \mathrm{xy}-\mathrm{y}^{2}\right) \overline{\mathrm{a}}_{x}+\left(\mathrm{x}^{2} \mathrm{z}-2 x y\right) \overline{\mathrm{a}}_{\mathrm{y}}+\mathrm{x}^{2} \mathrm{ya} \overline{\mathrm{a}}_{\mathrm{z}} \mathrm{C} / \mathrm{m}^{2} \text { at } \mathrm{P}_{1}(2,3,-1) . \\
& \overline{\mathrm{D}}=2 \mathrm{rz}^{2} \sin ^{2} \phi \overline{\mathrm{a}}_{\mathrm{r}}+\mathrm{rz}^{2} \sin 2 \phi \overline{\mathrm{a}}_{\phi}+2 \mathrm{r}^{2} \mathrm{z} \sin ^{2} \phi \overline{\mathrm{a}}_{z} \mathrm{C} / \mathrm{m}^{2} \\
& \text { at } \mathrm{P}_{2}\left(\mathrm{r}=2, \phi=110^{\circ}, \mathrm{z}=-1\right)
\end{aligned}
$$

(ii)
(06 Marks)
c. State and Prove divergence theorem.

OR

4 a. Obtain the expression for potential difference by bringing a unit positive charge from Point B to Point A. The point B is at r_{B} distance and point A is at r_{A} from the origin.
(06 Marks)
b. Show that the energy required to assemble ' n ' number of point charges in an empty space is, $\mathrm{W}_{\mathrm{E}}=\frac{1}{2} \sum_{\mathrm{m}=1}^{\mathrm{n}} \mathrm{Q}_{\mathrm{m}} \mathrm{V}_{\mathrm{m}}$.
(08 Marks)
c. Find the workdone in moving +2 C charge from $\mathrm{B}(2,0,0) \mathrm{m}$ to $\mathrm{A}(0,2,0) \mathrm{m}$ along the straight line joining the two points. Assume that the electric field $\overline{\mathrm{E}}$ is $12 \mathrm{x}_{\bar{a}_{x}}-4 \bar{y}_{\mathrm{a}} \mathrm{V} / \mathrm{m}$.
(06 Marks)

Module-3

5 a. Starting from Gauss's law in point form, deduce Poisson's and Laplace's equations.
(06 Marks)
b. Two plates of parallel plate capacitor or are separated by the distance of ' d ' m and maintained at zero and V_{0} voltages respectively. Determine capacitance between these two plates.
c. State and explain Biot-Savart law.

17EC36

OR

6 a. Obtain the expression for $\overline{\mathrm{H}}$ in all the regions if a cylindrical conductor carries a direct current I and its radius is ' R ' m. Plot the variation of $\overline{\mathrm{H}}$ against the distance r from the centre of the conductor.
(08 Marks)
b. Given the general vector $\overline{\mathrm{A}}=\sin 2 \phi \overline{\mathrm{a}}_{\phi}$ in cylindrical co-ordinate system. Find curl of $\overline{\mathrm{A}}$ at $\left(2, \frac{\pi}{4}, 0\right)$.
(06 Marks)
c. Explain the concept of scalar and vector magnetic potentials.
(06 Marks)

Module-4

7 a. Derive Lorentz force equation.
(06 Marks)
b. Obtain the expression for magnetic force between two current elements and hence for current loops.
(08 Marks)
c. A current element of 2 m in length lies along y axis centred at origin. The current is 5 A in \bar{a}_{y} direction. If it experience a force $1.5 \frac{\left(\bar{a}_{x}+\bar{a}_{z}\right)}{\sqrt{2}} N$ due to uniform field \bar{B}. Determine \bar{B}. (06 Marks)

OR

8 a. In certain region, the magnetic flux density of magnetic material with $X_{m}=6$ is given by $\bar{B}=0.005 y^{2} \bar{a}_{x} T$. At $y=0.4 \mathrm{~m}$, find the magnitude of $\overline{\mathrm{J}}$.
(06 Marks)
b. Derive the expression for the energy density in the magnetostatic fields.
(08 Marks)
c. Tabulate the similarities of the electric and magnetic circuits.

Module-5

9 a. A conductor of 1 cm in length is parallel to z-axis and rotates at radius of 25 cm at 1200 rpm . Find induced voltage if the radial field is given by, $\bar{B}=0.5 \mathrm{a}_{\mathrm{r}} \mathrm{T}$.
(06 Marks)
b. Derive Maxwell's equation in point form from Ampere's circuit law and Gauss's law for static field.
(08 Marks)
c. List Maxwell's equation in point form and integral form.

OR

10 a. Derive the General Wave equation starting from Maxwell's equations.
(08 Marks)
b. A 300 MHz uniform plane wave propagates through fresh water for which $\sigma=0, \mu_{\mathrm{r}}=1$ and $\epsilon_{\mathrm{r}}=78$. Calculate attenuation constant, phase constant, wavelength and intrinsic impedance.
(06 Marks)
c. State and prove pointing theorem.

